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Coupled modified baker’s transformations for the Ising model
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An invertible coupled map lattice is proposed for the Ising model. Each elemental map is a modified baker’s
transformation, which is a two-dimensional map ofX and Y. The time evolution of the spin variable is
memorized in the binary representation of theY variable. The temporal entropy and time correlation of the spin
variable are calculated from the snapshot configuration of theY variables.@S1063-651X~99!07012-9#

PACS number~s!: 05.45.Ra, 05.50.1q, 05.40.2a, 05.45.2a
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Coupled map lattice models have been used to study
otic spatiotemporal patterns@1–3#. We proposed a couple
map lattice which exhibits a thermodynamic phase transi
equivalent to the Ising model@4–6#. In the previous model
each elemental map is the Bernoulli shift. The Bernoulli sh
is a one-dimensional map and it is not invertible. We prop
an invertible coupled map lattice for the Ising model in th
paper. The invertibility implies that the state in the past c
be known from the information of the present state. In o
model, the spin state in the past is memorized especially
simple manner. It is an example of simple chaotic dynam
systems which has nontrivial thermodynamic properties.

Each elemental map is a modified baker’s transformat
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~Xn11!21,

Yn115
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2
~Yn11! for 21,Xn,a,

Xn115
2

12a
~Xn21!11,

Yn115
1

2
~Yn21! for a,Xn,1, ~1!

where a is a parameter satisfying21,a,1. It is a two-
dimensional map from a square region@21,1#3@21,1# to
the same square region. The two-dimensional map is redu
to the original baker’s transformation fora50. The mapping
of X is equivalent to the Bernoulli shift. The Bernoulli shi
has a uniform invariant measurer(X)51/2 over 21,X
,1. A spin variableSn is defined asSn5sgn(Xn112Xn),
that is,Sn51 for Xn,a andSn521 for Xn.a. The mean
value of Sn is a and its time correlation iŝSnSm&5dn,m .
The spin variableSn is also written asSn5sgn(Yn11).

We can construct various coupled map systems using
elemental map. A globally coupled map model is construc
as
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Yn11
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2
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wherei 51,2, . . . ,N. The parameteran is expressed as

an5tanhS K(
i 51

N

Sn21
i /ND , ~3!

where K is a coupling constant andSn
i 5sgn(Xn11

i 2Xn
i ).

The uniform invariant measurer51/2 is maintained even if
the parameteran is temporally fluctuating. The mean valu
of Sn

i is approximated atan . The order parameter defined a
Mn51/N( i 51

N Sn
i satisfies

Mn51/N(
i 51

N

Sn
i 5an5tanh~KMn21!, ~4!

whenN→`. A phase transition occurs atK51.
A two-dimensional coupled map lattice is constructed
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11an
i , j ~Xn

i , j11!21,

Yn11
i , j 5
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2
~Yn

i , j11! for 21,Xn
i , j,an

i , j ,

Xn11
i , j 5

2

12an
i , j ~Xn

i , j21!11,

Yn11
i , j 5

1

2
~Yn

i , j21! for an
i , j,Xn

i , j,1, ~5!

where 1< i<L and 1< j <L denote a lattice point in theL
3L square lattice. The parameteran

i , j is variable expressed
as
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an
i , j5tanhH K

4
~Sn21

i 11,j1Sn21
i 21,j1Sn21

i , j 111Sn21
i , j 21!J , ~6!

whereK is a coupling constant. The updating is perform
alternatively for even lattice points~wherei 1 j is even! and
odd lattice points. In this case, the probability distributi
pn($mi , j%) that the spin configuration$Sn

i , j% takes$mi , j% at
time n obeys a master equation

pn~$mi , j%!5 (
m8 i , j

pn21~$m8 i , j%!w~$m8 i , j%→$mi , j%!, ~7!

wherew($m8 i , j%→$mi , j%) is the transition probability. The
equilibrium distributionpeq is obtained as

peq~$m
i , j%!}expH K/8(

i , j
mi , j~mi 11,j1mi 21,j

1mi , j 111mi , j 21!J , ~8!

which is equivalent to the equilibrium distribution of th
two-dimensional Ising model. The Ising system exhibits
phase transition atK52 ln(11A2) for N5L2→`. This
phase transition was numerically checked in Ref.@4# for the
coupled Bernoulli map lattice. We consider mainly the ro
of Y variables hereafter in the coupled modified bake
transformations.

The coupled map lattice is invertible. The time-rever
mapping for the two-dimensional model is written as

Yn
i , j52Yn11

i , j 21,

Xn
i , j5

11an
i , j

2
~Xn11

i , j 11!21 for 0,Yn11
i , j ,1,

Yn
i , j52Yn11

i , j 11,

Xn
i , j5

12an
i , j

2
~Xn11

i , j 21!11 for 21,Yn11
i , j ,0. ~9!

The parameteran
i , j is given by Eq. ~6! where Sn21

i , j

5sgn(Yn
i , j ). The invertibility implies that the state in the pa

can be known from the information of the present state. T
memory of the past state is stored in theY variables. A vari-
able y5(Y11)/2 is a real number between 0 and 1, the
fore y can be represented by a binary notation
0.s1s2s3s4s5•••, wheresk is 0 or 1. The forward time evo
lution of Y by Eq.~5! is represented as a shift of the sequen
$sk% in the right direction: 0.s1s2s3s4s5•••

→0.s0s1s2s3s4s5•••. The newly added bits0 is equal to
(Sn11)/2. In other words, the binary notatio
0.s0s1s2s3s4••• at stepn11 implies that 2sk21 is the spin
variableSn2k at stepn2k. The history of the spin variable
$Sn2k

i , j % is represented in the binary notation of theyi , j vari-
ables at a certain step. The inverted time evolution ofY by
Eq. ~9! is represented as a shift of$sk% in the inverse direc-
tion: 0.s1s2s3s4s5•••→0.s2s3s4s5•••. We will study sev-
eral statistical properties of the time sequence of the s
variables using the snapshot profiles ofY variables.
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We first study a fine structure of the snap-shot pro
(Xn

i ,Yn
i ) of the globally coupled system~2!. For the globally

coupled system withN5`, the order parameter decays
zero and the spin configuration is random forK,1. For K
.1, the order parameter takes a constant nonzero valuM.
The elemental map is a modified baker’s transformation w
a constant parametera5tanhKM. The entropy per one ste
for the time sequence ofSk is 2p ln p2(12p)ln(12p) where
p5(11a)/2. Figure 1~a! displays a snapshot of (Xi ,Yi) for
i 51,2, . . . ,N at K51.05 andN510 000. A random initial
condition forX0

i andY0
i is assumed andS0

i is all 1. We have
calculated the generalized dimensionDq and its Legendre
transformf (a) spectrum to characterize the multifractal pa
tern @7#. Dq is defined as

Dq5 lim
l→0

1

q21

ln(
i 51

N0

pi
q

ln l
, ~10!

where the interval@0,1# is divided into N0 intervals, l
51/N0 is the size of the divided small intervals andpi is the
probability thatyi locates in thei th interval. The solid line in
Fig. 1~b! displays thef (a) spectrum which have been nu
merically obtained from the snap-shot profiles of the globa
coupled map withN510 000 andl is assumed to be 1/1024
The dashed line in Fig. 1~b! is the f (a) spectrum for the
strange attractor of the elemental modified baker’s trans
mation with a constanta:

FIG. 1. ~a! Snapshot pattern of (Xi ,Yi) at K51.05 for the glo-
bally coupled map model~2!. ~b! The solid line is thef (a) spec-
trum for the globally coupled map model and the dashed line is
for the modified baker’s transformation witha50.3707.
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f ~r !52
r ln r 1~12r !ln~12r !

ln 2
,

a52
r ln p1~12r !ln~12p!

ln 2
, ~11!

where r is a parameter between 0 and 1 andp5(11a)/2.
The constant parametera is given by a5M5tanh(KM)
50.3707 forK51.05. The peak value off (a) is equal to the
capacity dimensionD0, andD051 for the modified baker’s
transformation. But the information dimensionD1
5$2p ln p2(12p)ln(12p)%/ln 2 is smaller than 1. A good
agreement is seen irrespective of the small fluctuation for
order parameterMn .

If the interval @0,1# is divided into 2n intervals (l
51/2n), each small interval corresponds respectively to
binary notation 0.s1s2•••sn . For example, the interva
@3/8,1/2# is denoted as 0.011. The probabilitypi for each
interval is therefore equal to the probabili
P(S1 ,S2 , . . . ,Sn) of the corresponding time sequen
of the spin: S1 ,S2 , . . . ,Sn . The quantity
ln@($Sk%

$p(S1,S2, . . . ,Sn)%q#/(12q) is called the Renyi en-

tropy for the spin sequence. The Renyi entropy atq51 is the
Shannon entropy and it is proportional to the lengthn of the
sequence. The Renyi entropy over the step numbern is rep-
resented asDq ln 2 in our model from Eq.~10!. The Shannon
entropy overn is equal to the KS entropyHKS of the Ber-

FIG. 2. ~a! Snapshot pattern of (Xi , j ,Yi , j ) at K51.6 for the
two-dimensional coupled map lattice~5!. ~b! The solid line is the
f (a) spectrum for the two-dimensional coupled map lattice atK
51.6.
e

a

noulli map which is the mapping for theX variable. The
mean area-expansion rate in theX direction is equal to the
KS entropy. The area contraction rate in theY direction is
ln 2. The total area-contraction rate is ln 22HKS5ln 2(1
2D1). It is the entropy production rate or the informatio
loss rate for our dynamical system.

We can calculate similar quantities for the tw
dimensional coupled map lattice~5!. Figure 2~a! displays a
snapshot pattern of (Xi , j ,Yi , j ) for L5100 andK51.6. The
pattern seems to be multifractal and it is nearly symme
with respect toY50, since the parameterK,Kc . Figure
2~b! displays thef (a) spectrum. The peak off (a) is 1 as in
Fig. 1~b!. The KS entropy is a spatiotemporal entropy p
one step and one site and is defined in our coupled m
lattice as

HKS52 lim
n→`,N→`

$1/~nN!%

3 (
$Sk

i , j %

p~$S1
i , j%,$S2

i , j%, . . . ,$Sn
i , j%!

3 ln p~$S1
i , j%,$S2

i , j%, . . . ,$Sn
i , j%!.

On the other hand the temporal entropy per one step and
site is given by

HS52 lim
n→`,N→`

$1/~nN!%

3 (
Sk

i , j ,i , j

p~S1
i , j ,S2

i , j , . . . ,Sn
i , j !ln p~S1

i , j ,S2
i , j , . . . ,Sn

i , j !.

FIG. 3. ~a! Correlation functionr (n)5^Mm2nMm&/^Mm
2 & at K

51.45 for the two-dimensional coupled map lattice.~b! The marks
denotesx9( f ) calculated by Eq.~15! and the dashed line isx9( f )
given by Eq.~14!.
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That is,HKS is the information rate per one site for the tim
sequence of the spin configuration$Si , j% andHS is the aver-
age value of the information rate for the spin sequence
certain site. The spatial mutual information is taken into co
sideration in the KS entropy, however, it is not taken in
consideration inHS , therefore,HS is generally larger than
HKS . The temporal entropy per one stepHS is estimated as
D1 ln 2;0.575, since the information dimension isD1
;0.83,1. It is surely larger than the numerically obtaine
KS entropyHKS50.358.

The time sequence of the order parameter can be
calculated from the snapshot pattern ofYi , j . For example,
the magnetizationMn5(Sn

i , j /N at stepn is calculated as
Mn52N0 /N21 whereN0 is the number of sites at whic
Yn11

i , j .0, and the magnetizationMn21 is equal to
2N1 /N21 where N1 is the number of sites at whic
21/2,Yn11

i , j ,0 or 1/2,Yn11
i , j ,1. The time correlation of

magnetization can be calculated aŝ Mm2nMm&
5( l 51

L0 Mm2n2 l 11Mm2 l 11 /L0. Figure 3~a! displays the time
correlation functionr (n)5^Mm2nMm&/^Mm

2 & for K51.45
and L05100. The solid line is calculated from a snapsh
profile and the dashed line denotes the long-time aver
The averaged correlation function decays exponentially
ln wherel;0.952.

The time correlation of the order parameter is related
the response function of the order parameter for the tim
periodic perturbation. Such perturbation can be given
changing the parameteran

i , j as

an
i , j5tanhH K

4
~Sn21

i 11,j1Sn21
i 21,j1Sn21

i , j 111Sn21
i , j 21!

1b cos~2p f n!J , ~12!

whereb is the amplitude andf is the frequency of the per
a
-

so

t
e.
s

o
-

y

turbation. A simple linear map with a similar time period
perturbation is assumed to be

Mn5lMn211b cos~2p f n!. ~13!

The order parameterM decays exponentially asln when b
50. The linear mapping can be solved asMn
;Re@b exp(i2pfn)/$12l exp(2i2pf)%# for 0,l,1. The
complex susceptibility for the time periodic perturbation
therefore expressed as

x8~ f !1 ix9~ f !5
12l cos~2p f !2 il sin~2p f !

11l222l cos~2p f !
. ~14!

On the other hand, the complex susceptibility can be num
cally estimated from the time sequence of the spin confi
ration as

x8~ f !1 ix9~ f !5
2

Nn1b (
n51

n1

(
i , j

Sn
i , j exp~2 i2p f n!,

~15!

wheren1 is a step number to calculate a time average. T
numerical estimate ofx9( f ) for the coupled modified baker’s
transformations with parameteran

i , j by Eq. ~12! is shown in
Fig. 3~b! by the marks for variousf at K51.45, n1
540 000 andb50.005. The dashed line denotesx9( f ) in
Eq. ~14! with l50.952, which is a good approximation.

In summary we have proposed an invertible coupled m
lattice for the Ising model. The time sequence of the s
configuration is memorized in the binary representation
the Y variables. The temporal entropy of spin variables a
the time correlation of the order parameter have been ca
lated from the snapshot data of theY variables. This coupled
map lattice is an instructive model that connects the cha
dynamics and the statistical mechanics.
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